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An analysis is made of steady-state flow of a compressible fluid in an infinite rapidly
rotating pipe. Flow is induced by imposing a small azimuthally varying thermal forc-
ing at the pipe wall. The Ekman number is small. Analyses are conducted to reveal
both the axisymmetric-type and non-axisymmetric-type solutions. The axisymmetric
solution is based on the azimuthally averaged wall boundary condition. The non-
axisymmetric solution stems from the azimuthally fluctuating part of the wall boun-
dary condition. It is shown that the two-dimensional (uniform in the axial direction)
non-axisymmetric solution exists for σ (γ − 1)M2 � O(E1/3). However, an axially
dependent solution is found if σ (γ − 1)M2 � O(E1/3), in which E denotes the Ekman
number, M the Mach number, γ the specific heat ratio and σ the Prandtl number.
The axisymmetric solution prevails over the whole flow region; the two-dimensional
non-axisymmetric solution is confined to the near-wall thermal layer of thickness
O(E1/3). As a canonical example, a detailed description is given for the case of a
highly conducting wall with differential heating.

1. Introduction
This paper reports an analytical description of steady flow of a compressible fluid

contained in a rapidly rotating infinitely long cylindrical pipe of radius D∗. The usual
cylindrical frame (r∗, θ, z∗) is adopted [see figure 1]. In the basic state, the pipe and
the gas, which rotate steadily about the z∗-axis at constant rotation rate Ω∗, are
in thermal equilibrium at constant temperature T ∗

00. Here, the rotation rate Ω∗ is
sufficiently high that the fluid compressibility effect, as represented by finite values of
the peripheral Mach number M , is significant. The gas in the pipe is in rigid-body
rotation, and the density increases exponentially in the radially outward direction
(e.g. Sakurai & Matsuda 1974; Nakayama & Usui 1974; Bark & Bark 1976; Park &
Hyun 2001). Departures from the rigid-body rotation are created by imposing a
small temperature perturbation on the pipe wall, and the resulting flow is the subject
of the present investigation. The problem is relevant to industrial applications of
high-speed rotating-fluid machinery (e.g. Torri & Yang 1994) and to the models of
astrophysical systems (e.g. Gans 1975; Matsuda 1983). These flows are characterized
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Figure 1. Problem configuration.

by the smallness of the system Ekman number, E[≡µ/ρ∗
00(D

∗)Ω∗D∗2] � 1, in which µ

is the coefficient of viscosity, ρ∗
00(D

∗) the fluid density at the wall. The present problem
poses issues pertinent to the basic behaviour of rapidly rotating compressible fluid
flow (e.g. Frankel 1959; Morton & Shaughnessy 1972; Gans 1974; Sakurai & Matsuda
1974; Lalas 1975; Matsuda, Hashimoto & Takeda 1976; Louvet & Durivault 1977;
Bark & Hultgren 1979; Miles 1981; Hyun & Park 1989; Park & Hyun 1989, 1990;
Babarsky, Herbst & Wood 2002).

Park & Hyun (2001) dealt with the flow which arises in response to the imposition
of an axisymmetric thermal forcing at the pipe wall. Also, the assumption of heavy-
gas limit (γ = 1.0, γ being the ratio of specific heats) was invoked for small Mach
number, M � 1.0. The purpose of the present paper is to relax these restrictive
assumptions, i.e. in the present work, the thermal forcing at the wall is taken to be
an arbitrary function of the azimuthal coordinate θ . As emphasized, the specific heat
ratio and the Mach number are now assumed to be (γ − 1) ∼ O(1) and M ∼ O(1).
Theoretical approaches are pursued for the steady-state situation, and the outcome
demonstrates that substantial qualitative differences exist between the results of the
preceding analysis (Park & Hyun 2001) and the present effort.

One key dynamic ingredient of the boundary-layer flow under a non-axisymmetric
(θ-dependent) forcing is the E1/3-thermal layer. This was explored by Matsuda &
Nakagawa(1983) in a pie-shaped cylinder of infinite length rotating about the apex.
This layer plays a role of matching the axisymmetric temperature field in the interior
to the θ-dependent temperature condition at the wall. Wood & Babarsky (1992)
extended the analysis to describe the cylindrical ‘pancake’ layer. In the present study,
it is stressed that the container is an axisymmetric pipe, but the forcing at the wall is
taken to be a general function of the azimuthal angle θ .

The major findings of the present theoretical endeavours are summarized here.
For a compressible fluid, under a non-axisymmetric thermal forcing at the wall, the
temperature in the interior is substantially axisymmetric for σ (γ − 1)M2 � O(E1/3),
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where σ is the Prandtl number. The impact of the non-axisymmetric part of the
thermal loading at the wall is absorbed in the E1/3-thermal layer adjacent to the wall.
This induces a closed circulation in the E1/3-thermal layer, which, in turn, gives rise
to generation (removal) of heat by compression (expansion) work of the radial flows.
For σ (γ − 1)M2 � O(E1/3), a fully (z-dependent) three-dimensional flow is seen.

The aforestated features are in contrast to the case of an incompressible fluid. In
the latter, a non-axisymmetric thermal forcing at the wall produces a corresponding
non-axisymmetric temperature field in the interior. This can be easily understood
since, for the latter, the governing equation is the diffusion equation (see Carslaw &
Jaeger 1959; Batchelor 1967).

In the present paper, the mathematical formulation is posed in § 2. Theoretical
analyses are undertaken in § 3. Physical rationalizations are given in § 4, and illustrative
examples are presented. Concluding remarks are given in § 5.

2. Problem formulation
The flow geometry is sketched in figure 1. The cylindrical coordinates (r∗, θ, z∗),

with the corresponding velocity components (u∗, v∗, w∗), are selected. The solid wall
of the pipe (r∗ = D∗) is assumed isothermal.

For a perfect gas, the density field in the basic-state rigid-body rotation is given as
(e.g. Bark & Bark 1976)

ρ∗
00(r

∗) = ρ∗
00(D

∗)exp
[

1
2
γM2(r2 − 1)

]
, (1)

in which subscript 00 refers to the undisturbed basic state at uniform temperature
T ∗

00, and M is the Mach number of the peripheral velocity at the wall,
M ≡ Ω∗D∗/(γRT ∗

00)
1/2, R the gas constant, and r ≡ r∗/D∗. The superscript * denotes

dimensional quantities. Equation (1) indicates that the density increases exponentially
in the radially outward direction.

Now, a small deviation from the above rigid-body rotation, by imposing a thermal
perturbation at the wall, is considered. The magnitude of the perturbation is gauged
by the Rossby number ε ≡ T p/T ∗

00, where T p stands for the size of the thermal
perturbation in the system. It is, therefore, advantageous to implement a consistent
scheme of non-dimensionalization, which is guided by the preceding studies (e.g.
Sakurai & Matsuda 1974; Park & Hyun 2001):

u =
γM2u∗

εΩ∗D∗ , v =
γM2v∗

εΩ∗D∗ , p =
p∗

ερ∗
00(D

∗)RT ∗
00

,

T =
T ∗

εT ∗
00

, ρ =
ρ∗

ερ∗
00(D

∗)
, t = t∗Ω∗.

In the above, ρ∗, p∗ and T ∗ denote the dimensional perturbations of density, pressure
and temperature, respectively.

The governing non-dimensional linearized steady Navier–Stokes equations, viewed
on the cylindrical frame rotating at Ω∗, are (e.g. Bark & Bark 1976; Bark & Hultgren
1979; Park & Hyun 2001):

1

r

∂

∂r
(rρ00u) +

1

r

∂

∂θ
(ρ00v) = 0, (2)

−2ρ00v − γM2rρ = −∂p

∂r
+ E

[(
∇2 − 1

r2

)
u +

(
1
3

+ β
) ∂

∂r
(∇ · u) − 2

r2

∂v

∂θ

]
, (3)
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2ρ00u +
1

r

∂p

∂θ
= E

[(
∇2 − 1

r2

)
v +

1

3r

∂

∂θ
∇ · u +

2

r2

∂u

∂θ

]
, (4)

−σ (γ − 1)

γ
rρ00u = E∇2T , (5)

p = ρ + ρ00T , (6)

in which

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
,

and β is the ratio of the expansion and shear viscosities, and the Prandtl number
σ ≡ µCp/k, µ is the coefficient of viscosity, Cp is the specific heat at constant pressure
and k is the coefficient of thermal conductivity. The basic-state density field, in
non-dimensional form, can be written as ρ00(r) ≡ exp[ 1

2
γM2(r2 − 1)].

In the present problem formulation, the thermal forcing at the wall is prescribed to
be an arbitrary function of azimuthal coordinate, i.e. f (θ). Accordingly, the boundary
conditions are:

u(r = 1.0, θ) = 0, v(r = 1.0, θ) = 0, T (r = 1.0, θ) = f (θ). (7)

It is convenient to deploy a circumflex to represent the azimuthally averaged value
of a dependent variable, i.e.

φ̂ =
1

2π

∫ π

−π

φ(r, θ) dθ. (8a)

Furthermore, a tilde denotes the deviation of φ from φ̂, i.e.

φ̃ = φ(r, θ) − φ̂. (8b)

It follows immediately that the thermal forcing at the wall in (7) can be decomposed
into axisymmetric and non-axisymmetric parts:

f (θ)[≡ T (r = 1, θ)] = f̂ +
∑

n

f̃ n einθ ,

where the index n refers to the nth complex Fourier component

f̃ n =
1

2π

∫ π

−π

f (θ) e−inθ dθ.

Equation (7) can then be re-expressed as:
(for the axisymmetric part)

û(r = 1.0, θ) = 0, v̂(r = 1.0, θ) = 0, T̂ (r = 1.0, θ) = f̂ , (9a)

(for the non-axisymmetric part)

ũ(r = 1.0, θ) = 0, ṽ(r = 1.0, θ) = 0, T̃ (r = 1, θ) =
∑

n

f̃ n einθ . (9b)

3. Analysis
3.1. Axisymmetric part

The velocity and temperature fields in the steady state, subject to an axisymmetric
thermal forcing, i.e. Tw = f̂ , are now delineated (see (8a)). The subscript w refers to the
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pipe wall at r = 1.0. By employing the averaging process (see (8a)) to the continuity
equation, (2), the axisymmetric radial velocity is

ûs(r) = 0. (10)

Here, subscript s refers to the steady state. Substituting (10) into the azimuthally
averaged forms of (4) and (5) yields

v̂s(r) = 0, (11)

T̂ s(r) = f̂ . (12)

Obviously, the above results reconfirm that the steady-state flow is in isothermal
rigid-body rotation.

The associated density and pressure fields can be found by undergoing algebraic
manipulations. From (6), we have,

p̂s(r) = ρ̂s(r) + ρ00(r)f̂ . (13)

Bringing (13) into the axisymmetric part of (3) produces

dρ̂s

dr
− γM2rρ̂s = −f̂

dρ00

dr
. (14)

The solution to (14) is found to be

ρ̂s(r) =
(
C1 − 1

2
f̂ γM2r2

)
ρ00(r). (15)

The integration constant C1 is determined by using the global mass continuity, i.e.∫ 1

0
ρ̂s2πr dr = 0:

C1 = 1
2
f̂

(
γM2

1 − exp(−γM2/2)
− 2

)
.

The pressure p̂s is obtained from (13):

p̂s(r) = 1
2
f̂ γM2

(
1

1 − exp(−γM2/2)
− r2

)
ρ00(r). (16)

Compiling the above developments, the steady-state density and pressure profiles,
subject to the axisymmetric thermal forcing Tw = f̂ , are illustrated. As seen in
figure 2(a), for f̂ > 0, in comparison with the basic state, density is larger (smaller)
in the interior region near the axis (near the wall). (For f̂ < 0, the trend is reversed.)
It is noted that, in the steady state, the temperatures of the fluid and of the wall are
equalized. Therefore, the effective peripheral Mach number is smaller (larger) than
that of the basic state for f̂ > 0 (f̂ < 0). It is recalled that, when the rotational speed
of the pipe wall is unchanged, the peripheral Mach number is inversely proportional
to the acoustic speed (a =

√
γRTw). In the case of isothermal rigid-body rotation, the

radial profile of density ρs(r), as shown in (15), is determined by γ and M , and the
radial variation of ρs(r) becomes steeper (milder) as M increases (decreases). This
explanation is in accord with the above characterization of ρs(r).

The pressure profile, as displayed in figure 2(b), is similar to the density profile.
However, the qualitative difference between the two profiles is also notable. Unlike
ρ̂s(r), for f̂ > 0 (f̂ < 0), the pressure is higher (lower) than the corresponding basic-
state value throughout the entire region. A proper physical interpretation is in order.
As is evident in (13), the pressure profile is determined by both the density [ρ̂s(r)]
and temperature (f̂ ). For f̂ > 0, in the central interior region, both the density and



130 J. S. Park and J. M. Hyun

2

1

0

–1
0 1

0.5

1.0

1.5

M = 2.0

0.5

1.0

1.5

M = 2.0

(a)

(b)

ρs–—
f ρ00

ˆ

ˆ

3

2

1

0 1

ρs–—
f ρ00

ˆ

ˆ

r

Figure 2. Axisymmetric fields of (a) density ρ̂s and (b) pressure p̂s . γ =1.4.

temperature increase, which causes the pressure to increase. However, for f̂ > 0, near
the wall, the density decreases but the temperature increases, which makes opposite
contributions to the change in pressure. In this case, the pressure increase due to the
temperature increase outweighs the pressure decrease due to the density decrease (this
can be readily confirmed by inspecting (13) and (15)). In summary, if f̂ > 0 (f̂ < 0),
the steady-state pressure is larger (smaller) than the basic-state value in the entire
region.

It is worth mentioning that the Ekman number E and Prandtl number σ do not
enter in the determination of the axisymmetric flow and temperature fields. Therefore,
the values of E and σ are not given in the caption of figure 2.

It is of interest to examine the profiles of density and pressure in the two limiting
cases, i.e. M � 1 and M � 1.
(i) M � 1 (the incompressible-flow limit)

From (15) and (16), for M � 1, we have

ρ̂s ∼ O(M2), (17a)

p̂s
∼= f̂ + O(M2). (17b)
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It implies that the density field for M � 1 is uniform and infinitesimally different from
the basic-state value throughout the whole region within the error bound of O(M2).
The perturbed pressure field p̂s is also nearly uniform in the entire region, and, owing
to the temperature increase at the wall f̂ , the increase of pressure over the baisc-state
value is p̂s/f̂ = 1. Alternatively stated, in the incompressible-flow limit (M � 1), an
alteration in fluid temperature causes a change only in pressure, not in density. This
assertion, as demonstrated in figure 2(a), is consistent with the earlier finding of Park &
Hyun (2001) for the heavy gas limit.
(ii) M � 1(the hypersonic flow limit)

If M � 1, (15) and (16) can be approximated:

ρ̂s
∼= f̂

[
1
2
γM2(1 − r2) − 1

]
ρ00 + O(M2 exp(−M2)), (18a)

p̂s
∼= f̂

(
1
2
γM2

)
(1 − r2)ρ00 + O(M2 exp(−M2)). (18b)

It is seen that, for M � 1, by the imposition of axisymmetric temperature increase at
the wall Tw = f̂ , the perturbed density [ρ̂s/ρ00] and pressure [p̂s/ρ00] profiles become
quadratic in r . It is useful to locate the radial position Rc at which the density
variation reaches zero, ρ̂s = 0:

Rc =

√
1 − 2

γM2
. (19)

The physical meaning of this characteristic radial distance Rc is clear. In 0 � r < Rc,
the correlation between changes in density and temperature is positive (ρ̂s/f̂ ρ00 > 0);
and in Rc < r � 1, the correlation is negative (ρ̂s/f̂ ρ00 < 0). Moreover, from (13), the
effects of temperature and of density on the pressure distribution are cooperative in
0 � r < Rc and opposing in Rc < r � 1. These interpretations are in line with the prior
physical explanations on figure 2(b). Consequently, in the case of M � 1, the entire
flow region is separated into qualitatively different regions: the cooperative zone,
0 � r < Rc and the opposing zone, Rc < r � 1.

A perusal of (19) is made for the situation of very large M , i.e. Rc → 1.0 when
M → ∞. In this case, the cooperative zone prevails in the entire region with the
exception of r =1, in which changes in both density and pressure are positively
correlated in 0 � r < 1 with the imposed change in wall temperature. Physically
speaking, in the limit M � 1, the majority of the mass of rotating fluid is concentrated
in the immediate neighbourhood of the wall (r = 1). It then follows that most of the
total thermal energy transferred between the fluid and the wall is restricted to a thin
opposing zone adjacent to the wall. As M → ∞, the opposing zone, Rc < r � 1, shrinks
rapidly to the vicinity of the wall. In this extremely narrow region, as stipulated,
the density decreases (increases) owing to volumetric expansion (compression) of the
fluid, which is caused by the heating (cooling) at the wall. Therefore, in nearly the
entire region, i.e. cooperative zone, 0 � r < Rc when Rc → 1.0, the fluid is compressed
(expanded) with the heating (cooling) at the wall so that both density and pressure
increase (decrease) (see figure 2b).

3.2. Non-axisymmetric part

Now, analyses are made of the interior flow when the thermal forcing at the wall is
non-axisymmetric. It will be shown that z-independent solutions are permitted only
under the condition σ (γ − 1)M2 � O(E1/3). When this condition is not satisfied, i.e.
σ (γ −1)M2 � O(E1/3), the flow is z-dependent, which implies full three-dimensionality
of the interior flow. This will be derived as part of the solution procedures.
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Figure 3. Plots of harmonic components for non-axisymmeric temperature fields (top frame)
and stream functions (bottom frame). M = 1.0, γ = 1.4, σ = 0.7. 
Ψ =0.3. (a) n= 1; (b) n= 2.

3.2.1. z-independent flow for σ (γ − 1)M2 � O(E1/3)

The crux of the argument is that, when σ (γ − 1)M2 � O(E1/3), the impact of the
non-axisymmetric thermal forcing at the wall can be effectively absorbed within the
sidewall thermal layer of thickness O(E1/3), which is similar to the well-known E1/3-
sidewall Stewartson layer (see Sakurai & Matsuda 1974; Bark & Bark 1976) and to
the thermal layer depicted by Matsuda & Nakagawa (1983) and Wood & Babarsky
(1992). In the bulk of the interior, 0 � r < 1 − O(E1/3), the flow is substantially
axisymmetric, which is induced by the axisymmetric forcing at the wall.

For E � 1, to secure a meaningful asymptotic solution, the flow variables are
expanded as

Φ̃ =

∞∑
n=0

En/mΦ̃n(ζ, θ ),

in which ζ = (1 − r)/E1/m and Φ̃ denotes ũ, ṽ, ρ̃, p̃ or T̃ . Upon substituting the above
expansions into the non-axisymmetric parts of governing equations (2)–(6), we can
easily find a choice of m =3 and ũ0 = p̃0 = 0. Therefore, the problem has a proper ex-
pansion parameter E1/3 and the associated boundary-layer coordinate ζ = (1 − r)/E1/3.
The leading-order dependent variables are scaled as

ũs ∼ O(E1/3), ṽs ∼ O(1), T̃ s ∼ O(1), ρ̃s ∼ O(1), p̃s ∼ O(E1/3).

In the above, a tilde refers to the non-axisymmetric component and subscript s to
the steady solution. The above scalings are similar to those for the E1/3-Stewartson
layer (Bark & Bark 1976) and to the E1/3-thermal layer (Matsuda & Nakagawa 1983;
Wood & Babarsky 1992).
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The leading-order governing equations are, from (2)–(6),

−∂ũs

∂ζ
+

∂ṽs

∂θ
= 0, (20a)

2ṽs + γM2ρ̃s +
∂p̃s

∂ζ
= 0, (20b)

2ũs +
∂p̃s

∂θ
− ∂2ṽs

∂ζ 2
= 0, (20c)

σ (γ − 1)

γ
ũs +

∂2T̃ s

∂ζ 2
= 0, (20d)

ρ̃s + T̃ s = 0. (20e)

From (20b), (20c) and (20e), we have

γM2 ∂T̃ s

∂θ
=

∂3ṽs

∂ζ 3
, (21a)

and, from (20a) and (20d),

−σ (γ − 1)

γ

∂ṽs

∂θ
=

∂3T̃ s

∂ζ 3
. (21b)

By eliminating ṽ from (21a) and (21b), the equation for temperature is obtained:

∂6T̃ s

∂ζ 6
+ σ (γ − 1)M2 ∂2T̃ s

∂θ2
= 0. (22)

It is apparent that, in view of the above scalings, the solution of (22) is meaningful
for the parameter range σ (γ − 1)M2 ∼ O(1), i.e. σ (γ − 1)M2 � O(E1/3). In addition,
it is worth mentioning that (22) was also derived by Matsuda & Nakagawa (1983),
who investigated gas flows in a pie-shaped infinitely long cylinder rotating about the
apex.

The appropriate boundary conditions for (22) are:

at ζ = 0, T̃ s =
∑

n

f̃ n einθ , (23a)

∂2T̃ s

∂ζ 2
= 0, (23b)

∂3T̃ s

∂ζ 3
= 0, (23c)

and, as ζ → ∞, all the variables tend to zero. Equation (23a) expresses the imposed
thermal loading at the wall, and (23b) states the non-permeable condition at the wall,
i.e. ũs = 0 leads to ∂2T̃ s/∂ζ 2 = 0 (see (20d)), and (23c) states the no-slip condition at
the wall, i.e. ṽs =0 leads to ∂3T̃ s/∂ζ 3 = 0 (see (21b)).

In a manner similar to Sakurai & Matsuda (1974), the function T̃ is expanded as

T̃ s(ζ, θ ) =
∑

n

T̃ n(ζ ) einθ . (24)
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By substituting (24) into (22), the solution T̃ n(ζ ), subject to (23a)–(23c), is acquired:

T̃ n(ζ ) = 1
2
f̃ n

[
exp(−γnζ ) + exp(−γnζ/2)

2√
3

cos

(√
3

2
γnζ − π

6

)]
, (25)

in which γn =(σ (γ − 1)M2n2)1/6.
The radial and azimuthal velocities are given by (20d) and (21b):

ũs(ζ, θ ) = − γ

σ (γ − 1)

∑
n

Ũ n(ζ )exp(inθ ), (26)

ṽs(ζ, θ ) = − γ

σ (γ − 1)

∑
n

Ṽ n(ζ )exp(i(nθ − π/2)), (27)

in which

Ũ n(ζ ) = 1
2
f̃ nγ

2
n

[
exp(−γnζ ) +

2√
3
exp(−γnζ/2)sin

(√
3

2
γnζ − π

3

)]
,

Ṽ n(ζ ) = − f̃ n

2n
γ 3

n

[
exp(−γnζ ) +

2√
3
exp(−γnζ/2)sin

(√
3

2
γnζ − 2π

3

)]
.

It is important to delineate the distinguishing features of the present endeavour
as compared with the preceeding treatises (Sakurai & Matsuda 1974; Matsuda &
Nakagawa 1983). As is discernible in (26) and (27), the E1/3-thermal layer of strength
O(1) adjusts the non-axisymmetric temperature at the wall to the axisymmetric interior
temperature field. Also, this layer satisfies both the no-slip and non-permeability
conditions at the wall. It is to be noted that, unlike the previous studies, the thermal
layer of the present study is a self-contained boundary layer.

In order to reinforce the above argument, the flow patterns of Matsuda & Nakawaga
(1983) are shown in figure 4. They dealt with the steady-state flow in a rotating pie-
shaped pipe. At two radial walls (θ = constant), different temperature TWU and TWB

are imposed (say, TWB > TWU ), and the cylindrical sidewall is highly conducting. It was
shown that a buoyancy layer is developed near the radial wall, which is akin to the
Ekman layer discussed in Sakurai & Matsuda (1974). Furthermore, an E1/3-thermal
layer is observed near the cylindrical sidewall, which is similar to the E1/3-Stewartson
layer. In the interior far away from the walls, the average temperature, (TWU + TWB)/2,
prevails. Also, a flow, v ∼ O(E1/2), exists which is directed from the relatively hot wall
(TWU ) toward the cold wall (TWB). In the E1/3-thermal layer, a closed-path flow of
leading order, T ∼ O(1), v ∼ O(1), u ∼ O(E1/3), is seen, which matches the interior to
the temperature at the sidewall (see � in figure). The resultant picture is that, in
order to channel the mass flow of O(E1/2) from a buoyancy layer to the opposite
buoyancy layer (see flow path � in figure), a first-order buoyancy-layer solution,
T ∼ O(E1/6), v ∼ O(E1/6), u ∼ O(E1/2), is called for.

A straightforward extension of the Matsuda & Nakagawa (1983) to a case of arbi-
trary temperature distribution at the cylindrical wall brings forth both E1/3- and
E1/4-thermal layers of O(1). As pointed out by Heijst (1983), these leading-order
E1/3- and E1/4-thermal layers call for the first-order solutions. Furthermore, in order
to satisfy the no-slip condition, this solution entails complexities of a degenerate
boundary layer, with the involvement of high-order solutions.

It is stressed here that the E1/3-thermal layer of strength O(1) of the present under-
taking satisfies completely the velocity and temperature conditions. This capability
stems from the shape of the container. The flow and thermal conditions in the
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Thermal layer of
thickness of O(E1/3)

Buoyancy layer of thickness of O(E1/2)

TWB

TWU

1

2

Figure 4. Schematic of the flow patterns in a pie-shaped cylinder of Matsuda &
Nakagawa (1983).

interior are determined by the conditions at the radial walls in the case of a pie-
shaped pipe of Matsuda & Nakagawa (1983). Similarly, these are determined by
the rotating disk endwalls in the finite cylindrical container of Sakurai & Matsuda
(1974). In the present problem of an infinite cylindrical pipe, the flow conditions in
the interior are determined by the average temperature at the cylindrical wall. Thus,
in the present formulation, there is no need for an E1/4-thermal layer. It is noted
that, in the geometry of Matsuda & Nakagawa (1983) the existence of buoyancy
layers entails a mechanism of pumping the interior fluid to the E1/3-thermal layer
(in the case of Sakurai & Matsuda (1974) a similar role is played by the Ekman
layer). However, in the present flow geometry, such a mechanism is absent, and there
is no need to transport fluid from one buoyancy layer to another. Therefore, in the
present geometry of axisymmetric cylindrical pipe, higher-order boundary layers are
not called for.

In summary, for the present problem of an axisymmetric cylindrical pipe, the interior
fluid is motionless at constant temperature. The E1/3-thermal layer of strength of O(1)
near the wall absorbs completely the azimuthal variation of temperature imposed at
the wall. These characteristics may be of relevance to futuristic space colonies (see
Matsuda 1983).

The above theoretical developments offer succint physical interpretations. As shown
in (22), when σ (γ − 1)M2 � O(E1/3), the effect of non-axisymmetric thermal forcing
at the wall is absorbed in the thermal layer of thickness O(E1/3) adjacent to the wall.
Inside the thermal layer, the fluid near the wall, where the thermal forcing is positive,
i.e. in the azimuthal wall sector under heating, undergoes thermal expansion. This
causes radially inward flows (see (26)). In contrast, in the azimuthal wall sector under
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cooling, the fluid undergoes thermal compression, which generates radially outward
flows. In response to the non-axisymmetric thermal condition at the wall, i.e. when
the azimuthal wall sectors under heating and cooling coexist, the resulting radially
inward and neighbouring radially outward flows induce azimuthal flows along the
wall within this O(E1/3)-layer (see (26) and (27)). This is clear from the consideration
of the continuity equation.

The overall picture inside this thermal layer is that, in the immediate vicinity of the
wall, azimuthal flows are generated from a cool to a hot wall sector; in the far region
away from the wall, azimuthal flows are in the opposite direction. These internal
flows inside the layer create a closed circulation. In this process, the fluid experiences
diffusive heating (cooling) from the hot(cold) sector of the wall. Simultaneously, the
radially inward (outward)-moving fluid at the hot (cold) sector is cooled (heated)
by the work done by the basic-state pressure field, i.e. (σ (γ − 1)/γ )ũs < 0 ((σ (γ −
1)/γ )ũs > 0), which is easily confirmed from the energy equation, (20d). This aspect
is absent in the case of an incompressible fluid. For an incompressible fluid, the
temperature field is governed by the diffusion equation. Therefore, a temperature
disturbance at the wall is not confined within the O(E1/3) boundary layer; the entire
flow domain is directly influenced by the thermal boundary condition at the wall. This
qualitative difference between compressible and incompressible flows was emphasized
earlier by Matsuda et al. (1976).

In the present discussion for a rapidly rotating compressible fluid, under
σ (γ − 1)M2 � O(E1/3), the essential dynamical element is the generation of radial
motions of O(E1/3) owing to the imposition of non-axisymmetric thermal forcing
at the wall (remember ũs ∼ O(E1/3)). As represented by the first term of (20d), the
radially inward (outward) motion causes volume expansion (compression) of the
fluid element owing to the basic-state background pressure distribution given in (1),
which results in cooling (heating) of the fluid. It is noted that the direct conductive
heating (cooling) from the hot (cold) sector of the wall, represented by the second
term of (20d), is offset by the cooling (heating) due to the aforesaid radial motions.
Consequently, it is possible that the effect of non-axisymmetric thermal forcing at the
wall is restricted within the E1/3-thermal layer, rather than propagating to the entire
flow domain approaching r → 0.

The exemplary computed results of the above theoretical developments ((25)–
(27)) are exhibited in figure 3 for the first (n = 1) and second (n= 2) modes. The
temperature and velocity fields shown are fully supportive of the preceding assertions
on the presence of a closed circulation within the E1/3-layer. Similar results are
obtainable for higher modes (n � 3).

In summary, when σ (γ − 1)M2 � O(E1/3), the non-axisymmetric component of
thermal forcing at the wall is absorbed within the E1/3-thermal layer adjacent to the
wall. In the interior region (ζ → ∞), only the effect of axisymmetric component of
wall thermal forcing remains. This leads to the conclusion that, under the aforestated
conditions, the temperature in the bulk of interior maintains axisymmetry even when
a non-axisymmetric thermal boundary condition is imposed at the wall.

3.2.2. Three-dimensional flow for σ (γ − 1)M2 � O(E1/3)

It is recalled that, under σ (γ − 1)M2 � O(E1/3), the previous scaling analysis
of § 3.2.1 is no longer valid (see (22)). Physically, for σ (γ − 1)M2 � O(E1/3), the
compressibility of fluid is weak; thus, the radial motion in the boundary layer, which
causes temperature variations of the fluid, is not strong enough to balance the thermal
diffusion effect. This implies that a boundary-layer-type solution of order unity does



Flow of a compressible fluid in a rapidly rotating pipe 137

not exist. Therefore, the leading-order interior temperature itself has to satisfy the
imposed thermal boundary condition at the wall when σ (γ − 1)M2 � O(E1/3).

First, it is shown here that no z-independent (two-dimensional) flow is allowed if
σ (γ − 1)M2 � O(E1/3). For this purpose, a z-independent flow on the (r − θ)-plane is
assumed, which will be shown to be incompatible with the assumptions adopted.

From (2)–(6), the z-independent (two-dimensional) leading-order equations in the
interior for non-axisymmetric components, when E � 1, are

∂

∂r
(rρ00ũi) +

∂

∂θ
(ρ00ṽi) = 0, (28a)

−2ρ00ṽi − γM2rρ̃i +
∂p̃i

∂r
= 0, (28b)

2ρ00ũi +
1

r

∂p̃i

∂θ
= 0, (28c)

σ (γ − 1)

γ
rρ00ũi + E∇2T̃ i = 0, (28d)

p̃i = ρ̃i + ρ00T̃ i , (28e)

in which subscript i refers to the interior variables.
From (28a)–(28c), we have

∂ρ̃i

∂θ
= 0. (29)

Since ρ̃i is a non-axisymmetric quantity, (29) indicates

ρ̃i = 0. (30)

It then follows, from (28e) and (30), that

p̃i = ρ00T̃ i . (31)

In view of (28c) and (31), we obtain

ũi = − 1

2r

∂T̃ i

∂θ
. (32)

Notice that, in the present analysis, the interior temperature field has to satisfy
the boundary condition at the wall (r =1) because there is no thermal boundary
layer of O(1). Consequently, in view of (32), the leading-order interior temperature
of O(1), which is linked to the radial velocity ũi of O(1), is not compatible with the
non-permeable radial-velocity condition at the wall, because ∂T̃ i/∂θ �= 0 at r = 1.

In summary, it is asserted that, in the parameter range σ (γ − 1)M2 � O(E1/3),
the above-described E1/3-thermal layer does not exist. It follows that the effect of
thermal loading at the wall diffuses into the interior, but it is not possible to have
two-dimensional flows in the (r − θ)-plane.

Further physical meaning may be extracted by working out an example. Consider
a heavy gas for which (γ − 1) � O(E) and M ∼ O(1), and as the thermal boundary
condition, the non-axisymmetric temperature distribution, T̃ w = sin(2θ), is imposed
at the wall (r = 1). As shown in (28d), the leading-order temperature has to satisfy
the diffusion equation if a two-dimensional flow in the (r − θ)-plane is assumed. The
solution for leading-order temperature is, from (28d),

T̃ i = r2 sin(2θ). (33a)
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Figure 5. Flow patterns, (a) on the (r − θ )-plane; (b) a perspective view.

From (28b), (28e), (30) and (33a), the leading-order solution for azimuthal velocity
in the interior is acquired, i.e.

ṽi = (r + γM2r3) sin(2θ), (33b)

and, from (32) and (33a), the radial velocity is

ũi = −r cos(2θ). (33c)

These results are demonstrated in figure 5(a). In the wall sector of heating [T̃ w > 0,
i.e. 0 < θ < π/2, π < θ < 3π/2], ṽi > 0; and in the wall sector of cooling [T̃ w < 0, i.e.
π/2 <θ < π, 3π/2 <θ < 2π], ṽi < 0. Consider a z = constant plane. As is discernible
in figure 5(a), in order to maintain the azimuthal flows of (33b), fluid motions are
directed toward (away from) the radial line of θ = π/2 (θ = 0). Since the motions have
been assumed to be two-dimensional in the (r − θ)-plane, ṽi ∼ O(1) from (33b), and
this points to the interior radial velocity ũi ∼ O(1) given in (33c). However, this result
leads to a contradiction: ũi ∼ O(1) cannot satisfy the non-permeability boundary
condition with any types of boundary layer. This can be explained by noting that,
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+ θ

– θ

T = 2T = 0
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Figure 6. Configuration of the differential heating problem.

under the presence of a boundary layer of thickness O(En), where n> 0, the radial
velocity that can be matched is O(En).

As is clear in (33c), the flux of fluid that is carried in by azimuthal velocities cannot
be squeezed out in the radial direction; therefore, there should be a z-directional
flow w̃i (see figure 5b). These arguments indicate the inappropriateness of the basic
assumption of two-dimensionality of flow in the (r − θ)-plane.

In conclusion, for σ (γ − 1)M2 � O(E1/3), no z-independent (two-dimensional)
solution exists in response to the non-axisymmetric, z-independent thermal forcing at
the wall. In realistic situations, fully three-dimensional z-dependent flows are obtained.
Detailed aspects of these flows are beyond the scope of the present paper.

4. Illustrative example – a differential heating on the pipe wall
As a specific and instructive example, under σ (γ − 1)M2 � O(E1/3), consider a

rapidly rotating pipe, with the coordinate frame attached, as displayed in figure 6.
The thermal forcing at the wall is T = 0 at θ = π and T = 2 at θ =0. If the wall is
perfectly conducting, the temperature boundary condition is a linear function of θ .
The associated boundary conditions are

u = v = 0, T = 2

(
1 −

∣∣∣∣ θπ
∣∣∣∣
)

, (−π <θ � π) at r = 1. (34)

With the aid of the developments in previous sections, the solution is readily
obtained:

Φs(r, ζ, θ ) = Φ̂s(r) + Φ̃s(ζ, θ ), (35)

in which Φs denotes the steady flow variables such as velocities, temperature, density
and pressure, a circumplex denotes the axisymmetric part and a tilde the non-
axisymmetric part.

For this example, the coefficients in the previous analysis are determined as

f̂ = 1,

f̃ n =

(
2

nπ

)2

[1 − (−1)n] (n = 1, 2, 3, . . .).
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The temperature is,

T = T̂ s + T̃ s

= 1 +

∞∑
n=1

2(1 − ( − 1)n)

(nπ)2

[
exp(−γnζ ) + exp

(
− 1

2
γnζ

) 2√
3

cos

(√
3

2
γnζ − π

6

)]
cos(nθ),

(36)

in which T̂ s was defined in (12) and T̃ s in (24), and γn =(σ (γ − 1)M2n2)1/6 and
ζ = (1 − r)/E1/3.

The density is found to be

ρ = ρ̂s + ρ̃s

=
1

2

(
γM2

1 − exp(−γM2/2)
− 2 − γM2r2

)
ρ00(r) −

∞∑
n=1

2(1 − (−1)n)

(nπ)2

×
[
exp(−γnζ ) + exp

(
− 1

2
γnζ

) 2√
3

cos

(√
3

2
γnζ − π

6

)]
cos(nθ), (37)

in which ρ̂s from (15) and ρ̃s = −T̃ s from (20e).
From (10) and (26), the radial velocity is

u = ûs + ũs

=
−γE1/3

σ (γ − 1)

∞∑
n=1

2γ 2
n (1 − (−1)n)

(nπ)2

×
[
exp(−γnζ ) +

2√
3
exp(−γnζ/2) sin

(√
3

2
γnζ − π

3

)]
cos(nθ), (38)

and, from (11) and (27), the azimuthal velocity is

v = v̂s + ṽs

=
γ

σ (γ − 1)

∞∑
n=1

2γ 3
n (1 − (−1)n)

(nπ)2

×
[
exp(−γnζ ) +

2√
3
exp(−γnζ/2) sin

(√
3

2
γnζ − 2π

3

)]
sin(nθ). (39)

The above theoretical results are shown graphically in figure 7. In the interior region
far away from the wall, the temperature is T =1.0, which is the average value of
the wall temperature profile. In the E1/3-thermal layer close to the wall, owing to the
diffusion from the wall, there is a relatively hot region (T > 1.0; −π/2 <θ < π/2) and
a relatively cold region (T < 1.0; −π <θ < −π/2, π/2 <θ < π), which are displayed in
figure 7(a). In the hot region (−π/2 < θ < π/2), the fluid undergoes thermal expansion,
which gives rise to radially inward motions. In the cold region (−π <θ < − π/2,
π/2 <θ < π), the fluid experiences thermal compression, which causes radially-outward
motions. These are illustrated in figure 7(c). In the course of these motions, density
becomes relatively lower (higher) in the hot (cold) region, as indicated in (37) and
shown in figure 7(b). These give rise to density variations in the azimuthal direction.
It should be mentioned that, owing to the temperature increment in the whole region
of the E1/3-thermal layer near the wall (see figure 7a), the density field is negative
in that region, i.e. −π < θ < π and ζ ∼ O(1); however, it becomes positive in the
interior region, i.e. η → ∞, to satisfy global mass continuity as shown in figure 2.
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Figure 7. Plots of (a) temperature field T = T̂ s + T̃ s; (b) density field ρ = ρ̂s + ρ̃s and
(c) streamfunction Ψ =

∫
ũs dθ near the wall. E = 10−6,M = 3.0, γ = 1.4 and σ = 0.7.


Ψ = 0.2.

Consequently, as can be inferred from (20b), azimuthal velocities are induced, which
satisfies the geostrophic thermal wind relation. These activities are represented in the
closed circulation, which is shown in figure 7(c).

At locations which are a distance of O(E1/3) away from the wall, the aforestated two
effects (thermal diffusion effect from the wall and thermal compression or expansion
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Figure 8. Comparisons between the radial thermal diffusion term, E(∂2T /∂r2), and the radial
compression work, (σ (γ − 1)/γ )rρ00u, near the wall. E = 10−6,M = 3.0, γ =1.4 and σ = 0.7.
(a) θ = 0 (or π); (b) θ = π/5 (or 4π/5); (c) θ = 2π/5 (or 3π/5). The solid (dashed) lines denote
the radial diffusion term (radial compression work) for θ = 0, π/5, 2π/5. For θ = 3π/5, 4π/5, π,
the solid (dashed) lines denote the radial compression work (radial diffusion term).

effect by the radial motion of the fluid) on the change of fluid temperature are
comparable and counteracting. Therefore, the fluid temperature increase (decrease)
caused by thermal diffusion from the hot (cold) sector of the wall is offset by the
cooling (heating) effect from volume change of fluid which occurs due to the radially
inward (outward) motions. Resultantly, at the edge of E1/3-layer, the temperature
approaches the average wall temperature T =1.0 which is equalized to the interior
temperature. In the region of the E1/3-layer, i.e ζ ∼ O(1), the energy balance should
be, from (6),

−σ (γ − 1)

γ
u ∼ E

∂2T

∂r2
+ higher-order terms.

The above assertion is shown in figure 8, in which a diagnostic analysis between the
thermal diffusion and the radial compression work terms is given. As expected from
the temperature field and fluid motion given in figure 7(a) and 7(c), the radial thermal
diffusion and radial compression work are most pronounced at θ =0 and θ = π (see
figure 8a), and those become negligible as θ → ± π/2 (see figure 8c).

It is emphasized that, when E � 1 and σ (γ − 1)M2 � O(E1/3), the fluid in the
bulk of the interior maintains axisymmetric rigid-body rotation. Only inside the
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Figure 9. Flow patterns for the differential-heating problem.

E1/3-thermal layer close to the wall, are flows present. Figure 9 displays the schematics
of these theoretical analyses.

In summary, the temperature in the bulk of the interior is equalized to T =1.0,
which is the average value of temperature distribution at the wall. The temperature
field is θ-dependent only inside the E1/3-thermal layer, as given in (36). The principal
dynamical balance in the interior is between the Coriolis force and the radial pressure
gradient, which is embodied in the geostrophic balance. In the E1/3-layer, balance is
maintained between the Coriolis force, the radial pressure gradient, and the buoyancy
resulting from the density gradient in the azimuthal direction, which is termed the
thermal geostrophic wind relation.

The physical rationalizations rendered in the above for a compressible fluid are
in contrast to the case of a conventional incompressible fluid. In the latter, the
energy equation represents a simple diffusion process; therefore, the non-axisymmetric
thermal forcing at the wall causes a corresponding non-axisymmetric temperature
field in the interior. The main difference in the temperature field in the interior
between compressible and incompressible fluids, subjected to the azimuthally varying
temperature distribution at the wall, is exemplified in figure 10.

5. Conclusions
The axisymmetric part of the thermal forcing at the wall gives rise to the interior

temperature, which is equalized to the average value, T̂ w , of the temperature distribu-
tion at the wall. The attendant flow in the interior is in rigid-body rotation, rotating
together with the pipe. In comparison with the original basic state, the density
increases (decreases) in the interior region near the axis for T̂ w > 0 (T̂ w < 0). Near
the wall, density decreases (increases) for T̂ w > 0 (T̂ w < 0). The pressure increases
(decreases) in the entire domain for T̂ w > 0 (T̂ w < 0).
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Figure 10. Isothermal patterns. (a) a compressible fluid; (b) an incompressible fluid.

Under a z-independent non-axisymmetric thermal forcing at the wall, in the
parameter range σ (γ − 1)M2 � O(E1/3), it is not possible to have a z-independent
(two-dimensional) flow in the (r − θ)-plane.

In the parameter range σ (γ −1)M2 � O(E1/3), the non-axisymmetric thermal forcing
at the wall is absorbed in the E1/3-thermal layer close to the wall. In the E1/3-layer,
regions of unequal temperatures, deviating from the average value T̂ w , are formed
owing to thermal diffusion from the wall. The accompanying azimuthally varying
density field gives rise to a closed circulation, which is in accord with the thermal
geostrophic wind relation. The attendant radial motions cause volume changes of
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fluid, which bring forth an effective heating or cooling of the fluid. In the vicinity of
the edge of the E1/3-layer, the above two effects stemming from the non-axisymmetric
thermal loading are comparable and counteracting; therefore, the temperature in the
interior is axisymmetric and is equalized to T̂ w .
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Korea Science and Engineering Foundation (KOSEF), 2002–2004, South Korea.
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